THE BELLFRAME
 CHURCH OF ST SWITHIN KIRKLINGTON NOTTINGHAMSHIRE

SURVEY, RECORDING AND TREE-RING ANALYSIS OF TIMBERS

Alison Arnold, Robert Howard \& George Dawson

NGR: SK 6791957607
JANUARY 2015

LOTTERY FUNDED

UNITED KINGDOM - CHINA - MALAYSIA

SURVEY, RECORDING AND TREE-RING ANALYSIS OF TIMBERS FROM THE BELLFRAME OF THE CHURCH OF ST SWITHIN, KIRKLINGTON, NOTTINGHAMSHIRE

ALISON ARNOL
ROBERT HOWARD
GEORGE DAWSON

SUMMARY

Dendrochronological analysis undertaken on samples taken from timbers of the bellframe at this church resulted in the construction of two site sequences.
Site sequence NBFBSQ01, containing eight samples from primary timbers, spans the period AD 1404-1669. Site sequence NBFBSQ02, contains six samples from later insertions, and spans the period AD 1567-1757.
Interpretation of the sapwood suggests felling of the primary timbers occurred in AD 1661/69 and that of the later beams in AD 1750/57.

SURVEY, RECORDING, AND TREE-RING ANALYSIS OF TIMBERS FROM THE BELLFRAME OF THE CHURCH OF ST SWITHIN, KIRKLINGTON, NOTTINGHAMSHIRE

INTRODUCTION

The Grade II* listed Church of St Swithin is located in Kirklington, approximately 15.3 km west of Newark (Figs 1 and 2). It consists of nave with south porch, chancel with south vestry, and west tower. Although it is thought to have its origins in the twelfth and thirteenth centurys, the church underwent comprehensive restoration in AD 1847 and then again in AD 1873 and as a result little of the original structure remains; the south doorway and possibly the core of the nave are twelfth century and the south porch is latethirteenth century. With the exception of a few of the lower, medieval stone courses, the present tower is thought to date to the seventeenth century (http://southwellchurches.nottingham.ac.uk/kirklington/hintro.php)

Bellframe

This oak bellframe for three bells is of king-post design (Pickford Group 5.A) with straight braces (Fig 3). The king post on truss C has a slot for a chiming hammer, now no longer used. There are no cut-outs on the braces of the other trusses, so it is clear that the frame has always had long heads.

There is some later bracing added to each truss consisting of struts from the base of the king-post to the top sills in an attempt to stiffen the frame. The treble bell is latefourteenth century in date, the second bell dates to the AD 1664, and the third to AD 1759.

It is possible that the frame was installed when the tower was rebuilt in the seventeenth century. It is on the Church Buildings Councils Lists of Bell fittings of Historical Importance.

Bells

Treble. [+ 122] SCA : MARIA : ORA PRO NOBIS : ROBERTVS :

 WILKINSON : FIERI : FECIT2. GOD [46] SAVE [46] THE [46] KING [46] 1664[53]

Tenor (i). WILLIAM REDMAN IOHN RENCH C. W. 1759 THOMAS HEDDERLY

(ii). FOUNDER

Badge numbers are taken from the Church Bells of Nottinghamshire.
All three bells retain their canons.

All letter S's on the treble bell are reversed.

The treble was cast by an unknown founder in the late-fourteenth century. The use of the word 'feiri' on it implies that the donor was Robert Wilkinson, whose identity has not been discovered. The bell is otherwise unique. The second bell was cast by George I Oldfield of Nottingham and the tenor is the work of Thomas I Hedderly, also of Nottingham.

The treble bell is on the Church Buildings Councils Lists of Bells of Historical Importance. As such the presumption is of minimal intervention at any restoration.

Physical data:

	Diameter(cm)	Weight (Cwt.Qr.Lbs)	Note
Treble.	$251 / 2^{\prime \prime}$	c 3 cwt	D\# $(1268 \mathrm{~Hz})$
2.	$281 / 2^{\prime \prime}$	c 4 cwt	C\# $(1100 \mathrm{~Hz})$
Tenor.	$30^{\prime \prime}$	c 6 cwt	B $(1011 \mathrm{~Hz})$

The clappers of the bells have caused heavy wear on the soundbows of the bells, and there is a strong risk of cracking if further ringing is undertaken.

The bells are not well in tune, with both the treble and tenor being sharp compared to the second bell. To be in tune (using the treble as datum) they should be 1268, 1129 \& 1006 Hz respectively. As the second is then flat of what it should be, the only course of action at a restoration and augmentation is some tuning of the historically important treble.

The fittings, headstocks, wheels, gudgeons and bearings appear to be of nineteenth century date.

PRINCIPLES OF TREE-RING DATING

Tree-ring dating relies on a few simple, but fundamental, principles. Firstly, as is commonly known, trees (particularly oak trees) grow by adding one, and only one, growth-ring to their circumference each, and every, year. Each new annual growth-ring is added to the outside of the previous year's growth just below the bark. The width of this annual
growth-ring is largely, though not exclusively, determined by the weather conditions during the growth period (roughly March to September). In general, good conditions produce wider rings and poor conditions produce narrower rings. Thus, over the lifetime of a tree, the annual growth-rings display a climatically determined pattern. Furthermore, and importantly, all trees growing in the same area at the same time will be influenced by the same growing conditions and the annual growth-rings of all of them will respond in a similar, though not identical, way.

Secondly, because the weather over any number of consecutive years is unique, so too is the growth pattern of the tree. The pattern of a short period of growth, 20 or 30 consecutive years, might conceivably be repeated two or even three times in the last one thousand years. A short pattern might also be repeated at different time periods in different parts of the country because of differences in regional micro-climates. It is less likely, however, that such problems would occur with the pattern of a longer period of growth, that is, anything in excess of 60 years or so. In essence, a short period of growth, anything less than 50 rings, is not reliable, and the longer the period of time under comparison the better.

The third principal of tree-ring dating is that, until the early-to mid-nineteenth century, builders of timber-framed houses usually obtained all the wood needed for a given structure by felling the necessary trees in a single operation from one patch of woodland or from closely adjacent woods. Furthermore, and contrary to popular belief, the timber was used "green" and without seasoning, and there was very little long-term storage as in timber-yards of today. This fact has been well established from a number of studies where tree-ring dating has been undertaken in conjunction with documentary studies. Thus, establishing the felling date for a group of timbers gives a very precise indication of the date of their use in a building.

Tree-ring dating relies on obtaining the growth pattern of trees from sample timbers of unknown date by measuring the width of the annual growth-rings. This is done to a tolerance of $1 / 100$ of a millimetre. The growth patterns of these samples of unknown date are then compared with a series of reference patterns or chronologies, the date of each ring of which is known. When a sample "cross-matches" repeatedly at the same date against a series of different relevant reference chronologies the sample can be said to be dated. The degree of cross-matching, that is the measure of similarity between sample and reference is denoted by a "t-value"; the higher the value the greater the similarity. The greater the similarity the greater is the probability that the patterns of the samples and references have been produced by growing under the same conditions at the same time. The statistically accepted fully reliable minimum t-value is 3.5.

However, rather than attempt to date each sample individually it is usual to first compare all the samples from a single building, or phases of a building, with one another, and attempt to cross-match each one with all the others from the same phase or building. When samples from the same phase do cross-match with each other they are combined at their matching positions to form what is known as a "site chronology". As with any set of data, this has the effect of reducing the anomalies of any one individual (brought about in the case of tree-rings by some non-climatic influence) and enhances the overall climatic signal. As stated above, it is the climate that gives the growth pattern its distinctive pattern. The greater the number of samples in a site chronology the greater is the climatic signal of the group and the weaker is the non-climatic input of any one individual.

Furthermore, combining samples in this way to make a site chronology usually has the effect of increasing the time-span that is under comparison. As also mentioned above, the longer the period of growth under consideration, the greater the certainty of the crossmatch. Any site chronology with less than about 55 rings is generally too short for satisfactory analysis.

SAMPLING STRATEGY

A total of 16 samples were taken from various timber elements of this bellframe with each sample being given the code NBF-B and numbered 01-16. Samples NBF-B01-10 were taken from timbers thought to be primary whilst samples NBF-B11-16 were from those believed to relate to later alterations. The location of all samples was noted at the time of sampling and has been marked on Figures 4-10. Further details can be found in Table 1. .

ANALYSIS \& RESULTS

At this stage one of the samples, taken from a primary timber (NBF-A07), was found to have a very compacted growth pattern which would have been impossible to measure accurately. The remaining 15 samples were prepared by sanding and polishing and their growth-ring widths measured. The growth-ring widths were then compared with each other resulting in 14 samples matching to form two groups.

Firstly, eight samples matched each other and were combined to form NBFBSQ01, a site sequence of 266 rings (Fig 11). This site sequence was compared against a series of relevant reference chronologies for oak where it was found to match securely and consistently at a first-ring date of AD 1404 and a last-measured ring date of AD 1669. The evidence for this dating is given by the t-values in Table 2.

Secondly, six samples matched each other and were combined to form NBFBSQ02, a site sequence of 191 rings (Fig 12). When this site sequence was compared against the reference chronologies it was found to match consistently and securely to span the period AD 1567-1757 (Table 3).

Attempts to date the remaining ungrouped sample by comparing it against the reference chronologies were unsuccessful and this sample remains undated.

INTERPRETATION

Fourteen samples taken from this bellframe have been successfully dated, eight from primary timbers and six from timbers associated with the later alteration (Fig 13).

Phase I

Eight of the samples associated with the primary phase have been successfully dated. Sample NBF-B01 has complete sapwood and the last-measured ring date of AD 1660. When this sample is looked at under the microscope it is possible to see the early growth cells for the following year, indicating that the timber represented was felled in AD Spring 1661. Two other samples, NBF-B05 and NBF-B06, match NBF-F01 at $t=12.3$ and $t=12.9$, respectively. This is of a value to suggest that all three beams represented were cut from the same tree, and so these two timbers were also felled in AD Spring 1661.

Sample NBF-B04 also has complete sapwood but with a last-measured ring date of AD 1669 can be seen to have been felled a little later (AD 1669).

Three other timbers have the heartwood/sapwood boundary ring date, which in all cases are broadly contemporary and suggestive of a single felling. The average of these is AD 1653, allowing an estimated felling date to be calculated for the timbers represented to within the range AD 1668-93, consistent with a felling of AD 1669.

The final dated sample (NBF-B10) does not have the heartwood/sapwood boundary and so an estimated felling date cannot be calculated except to say that a last-measured ring date of AD 1543 gives the timber represented a terminus post quem felling of $A D 1558$ and so it could have been felled in either AD 1661 or AD 1669.

Phase II

All six samples taken from the secondary phase have been dated. Three of these samples, NBF-B11, NBF-B13, and NBF-B16) have complete sapwood. Samples NBF-B11 and NBFB13 have the last-measured ring date of AD 1750, the felling date of the two timbers represented. Additionally, sample NBF-B11 matches one of the other samples (NBF-B12) at the very high value of $t=16.3$, indicating that both timbers were almost certainly cut from the same tree and thus demonstrating a felling of AD 1750 for NBF-B12 too. Sample NBF-B16 also has complete sapwood but with the slightly later felling date of AD 1757. The final two dated samples within this site sequence do not have the heartwood/sapwood boundary ring date but with last-measured heartwood dates of AD 1650 (NBF-B14) and AD 1700 (NBF-B15), these two timbers could have been felled in either AD 1750 or AD 1757. However, the t-value evidence (Table 4) does suggest that both are more likely to have been felled in AD 1750 with contemporary with NBF-B11, NBF-B12, and NBF-B13.

DISCUSSION

Prior to tree-ring dating being undertaken on the timbers of this bellframe it had been thought that the frame might date to the seventeenth century. A number of primary timbers have now been dated to AD 1661 and AD 1669, suggesting pointing to a construction date in the second half of the seventeenth century. The tower is also thought to have been rebuilt in the seventeenth century, with completion of it possibly commemorated by the AD 1664 bell. These results would suggest that the frame was built for the new tower.

Phase II also utilises timber of slightly differing dates, with five of the six timbers thought likely to have been felled in AD 1750 with the sixth, slightly later in AD 1757. These dates suggest the use of stockpiled timber with construction occurring in the mid-eighteenth century, and possibly coinciding with the casting of one of the bells in AD 1759.

The intra-site matching of samples in site sequence NBFBSQ01 is generally very good with a number of same tree matches noted (Table 4). This suggests a single woodland source was utilised, despite timbers being of slightly different dates. There is also some good matching between NBFBSQ02 but perhaps not so consistently. Despite the two site sequences overlapping by just over 100 years there is no matching between the two groups which may suggest a different woodland source for the timbers used for the eighteenth century modification. Indeed, when one looks at the reference chronologies against which each site sequence matches most highly (Tables 2 and 3) it is clear that the
source for LBFBSQ01, matches sites very local to Kirklington, all north Nottinghamshire whilst those against which LBFBSQ02 matches most highly are slightly more disparate.

It can be seen (Table 1) that the trees utilised in the phase I construction were extremely long lived, with the majority likely to have been more than 200 years old at felling. Those trees representing the second phase with the bellframe, although not particularly short lived, can be seen to be somewhat younger at felling.

BIBLIOGRAPHY

Arnold, A J, Howard, R E, Laxton, R R, and Litton, C D, 2001 Nottingham University Tree-Ring Dating Laboratory results, Vernacular Architect, 32, 92-8

Arnold, A J, Howard, R E, Laxton, R R, and Litton, C D, 2002 The Urban Development of Newark-on-Trent: A Dendrochronological Approach, Centre for Archaeol Rep 95/2002

Arnold, A J, Howard, R E, and Litton, C D, 2003 Tree-ring analysis of timbers from the roof of the Keep, or Little Castle, Bolsover Castle, Derbyshire, Centre for Archaeol Rep 15/2003

Arnold, A J, Howard, R E, and Litton, C D, 2004 Tree-ring analysis of timbers from Kibworth Harcourt Post Mill. Kibworth Harcourt, Leicestershire, Centre for Archaeol Rep 76/2004

Arnold, A J, Howard, R E, and Litton, C D, 2008 Nottingham Tree-ring Dating Laboratory, Vernacular Architect, 39, 119-28

Arnold, A J, and Howard, R E, 2009 Bentley Hall, Derby Lane, Hungry Bentley, Near Ashbourne, Derbyshire, tree-ring analysis of timbers, Res Dept Rep Ser 33/2009

Arnold, A and Howard, R, 2010 St Firmin Church, Thurlby, Lincolnshire: tree-ring analysis of timbers of the Bellframe and Tower, Res Dept Rep Ser 72/2010

Esling, J, Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1989 Nottingham University Tree-Ring Dating Laboratory: Results, Vernacular Architect, 20, 39-41

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1994 Nottingham University Tree-Ring Dating Laboratory: results, Vernacular Architect, 25, 36-40

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1995 Nottingham University Tree-Ring Dating Laboratory: results, Vernacular Architect, 26, 47-53

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1996 Nottingham University Tree-Ring Dating Laboratory: results, Vernacular Architect, 27, 78-81

Howard, R E, Laxton, R R, and Litton, C D, 2005 Tree-ring analysis of timbers from the Riding School, Bolsover Castle, Bolsover, Derbyshire, Centre for Archaeol Rep, 40/2005

Hurford, M, Howard, R E, and Tyers, C, 2010 Pitchforks and Numbers 1 and 2 Greasley Cottage, Main Street, Norwell, Nottinghamshire: Tree-Ring Analysis of Timbers, EH, Res Dep Rep Ser, 50/2010

Kirklington, St Swithin,http://southwellchurches.nottingham.ac.uk/kirklington/hintro.php

Laxton, R R, and Litton, C D, 1988 An East Midlands master tree-ring chronology and its use for dating vernacular buildings, University of Nottingham, Dept of Classical and Archaeol Studies, Monograph Series, III

ACKNOWLEDGEMENTS

The Laboratory and George Dawson would like to thank Mrs Weldon for facilitating access and Timothy Southall, Professor John Beckett, and Dr Chris Brooke for the information on the Southwell and Nottingham Church History website. Thanks are also given to Dr Chris Brooke for his comments on early drafts of this report. The research was undertaken as part of the Southwell and Nottingham Church History Project and this element was joint funded by The Heritage Lottery Fund and Nottinghamshire County Council.

Table 1: Details of samples taken from the bellframe at the Church of St Swithin, Kirklington, Nottinghamshire

Sample number	Sample location	*Total rings	**Sapwood rings	First measured ring date (AD)	Last heartwood ring date (AD)	Last measured ring date (AD)
Phase 1						
NBF-B01	Top cill, truss 1	233	18C	1428	1642	1660
NBF-B02	Top cill, truss 2	199	h/s	1458	1656	1656
NBF-B03	Top cill, truss 3	221	03	1440	1657	1660
NBF-B04	Top cill, truss 4	197	22C	1473	1647	1669
NBF-B05	Top cill, east end frame	209	h/s	1432	1640	1640
NBF-B06	Top cill, west end frame	238	h/s	1404	1641	1641
NBF-B07	North brace, west end frame	NM	--	----	----	----
NBF-B08	East post, truss 4	184	h/s	1462	1645	1645
NBF-B09	East post, truss 1	75	h/s	----	----	----
NBF-B10	King post, truss 3	76	--	1468	----	1543
Phase II						
NBF-B11	West strut, truss 1	170	47C	1581	1703	1750
NBF-B12	East strut, truss 1	146	18	1575	1702	1720
NBF-B13	West strut, truss 2	110	18C	1641	1732	1750
NBF-B14	West strut, truss 3	84	--	1567	----	1650
NBF-B15	East strut, truss 3	82	--	1619	----	1700
NBF-B16	East strut, truss 4	98	24C	1660	1733	1757

*NM = not measured
**h/s = the heartwood/sapwood boundary ring is the last-measured ring on the sample
$C=$ complete sapwood retained on sample, last-measured ring is the felling date s

Table.2: Results of the cross-matching of site sequence NBFBSQ01 and relevant reference chronologies when the first-measured ring date is AD 1473 and the last-measured ring date is AD 1669

Reference chronology	t-value	Span of chronology	Reference
Langford by Holme, Nottinghamshire	15.3	AD 1451-1608	Howard et al 1995
21 Church Street, Mansfield, Nottinghamshire	11.6	AD 1439-1584	AD 1467-1632
Langford Manor, Nottinghamshire	11.3	AD 1441-1656	Howard et al 1994
Manor House, Sutton in Ashfield, Nottinghamshire	11.2	AD 1426-1981	Howard et al 1989
Sherwood Trees, Sherwood Forest, Nottinghamshire	11.2	AD 1443-1688	Howard et al 1996
Yew Tree Farm, Kirton, Nottinghamshire	10.7	AD 1403-1655	Arnold et al 2001
5 Church Street, Newark-on-Trent, Nottinghamshire	10.6	Arnold et al 2002	

Table 3: Results of the cross-matching of site sequence NBFBSQ02 and relevant reference chronologies when the first-ring date is AD 1567 and the last-measured ring date is AD 1757

Reference chronology	t-value	Span of chronology	Reference
Wren Wing, Easton Neston, Northamptonshire	8.0	AD 1468-1686	Arnold et al 2008
Bolsover Castle (Riding House), Derbyshire	7.9	AD 1494-1744	Howard et al 2005
Bentley Hall, Hungry Bentley, Derbyshire	6.9	AD 1444-1675	Arnold and Howard 2009
Kibworth Harcourt Mill, Leicestershire	6.9	AD 1582-1773	Arnold et al 2004
St Firmin Church, Thurlby, Lincolnshire	6.6	AD 1599-1792	Arnold and Howard 2010
Bolsover (Little Castle), Derbyshire	6.6	AD 1532-1749	Arnold et al 2003
Pitchforks, Norwell, Nottinghamshire	6.6	AD 1624-1747	Hurford et al 2010

Table 4: Matrix of intra-site matching of all dated samples, the higher the level, the greater the similarity between samples; black box = phase I timbers, green box = phase II timbers

		1	2	3	4	5	6	7	8	9	10	11	12	13	14
NBF-B01	1	"	-30	-12	-45	-4	24	-34	-40	42	56	-37	. 72	-108	-87
NBF-B02	2	4.9	"	18	-15	26	54	-4	-10	-115	59	-7	-75	-119	-93
NBF-B03	3	5.3	11.0	"	-33	8	36	-22	-28	-30	-68	63	-2		
NBF-B04	4	5.5	4.7	5.0	+	41	69	11	5	114	96	-75	-51	-41	-94
NBF-B05	5	12.3	5.8	7.2	3.5	"*	28	-30	-36	-149	-143	36	-74		-41
NBF-B06	6	12.9	7.0	6.6	5.0	11.9	"	-58	-64	-177	-83	-43	-163	-181	-163
NBF-B08	7	5.2	7.6	9.7	4.5	5.4	7.6	+	-6	-74	-68	-105	20	30	20
NBF-B10	8	4.4	3.8	4.9	5.9	4.9	4.6	5.6	+	120	61	60	2	-24	41
NBF-B11	9	3.4	3.6	3.0	4.7	3.7	3.1	3.6	3.4	\%	6	-60	14	-38	-125
NBF-B12	10	2.6	3.3	3.0	3.7	4.1	2.7	3.0	2.6	16.3	+4	-43	8	-44	1
NBF-B13	11	2.3	2.9	3.7	3.3	3.5	3.7	3.5	3.1	4.2	3.1	+	-1	22	-19
NBF-B14	12	3.4	3.3	2.5	3.2	4.0	3.2	4.6	2.5	8.6	8.2	2.5	+10	-36	-7
NBF-B15	13	2.9	3.6	2.8	3.8	2.6	3.3	4.2	2.9	4.1	3.5	9.6	3.8	+	26
NBF-B16	14	3.8	2.5	3.0	4.9	3.5	3.5	3.7	2.9	4.3	2.6	8.1	3.1	2.6	**

Figure 1: Map to show the general location of Kirklington, circled (based on the Ordnance Survey map with permission of the Controller of Her Majesty's Stationery Office, ©Crown Copyright)

Figure 2: Map to show the location of the Church of St Swithin, arrowed (based on the Ordnance Survey map with permission of the Controller of Her Majesty's Stationery Office, ©Crown Copyright)

Figure 3: The bellframe, photograph taken from above

Figure 4: Plan, showing truss labelling and the location of samples NBF-B08 and NBF-B09 (George Dawson)

Figure 5: Truss A, showing the location of samples NBF-B01, NBF-B11, and NBF-B12 (after George Dawson)

Figure 6: Truss B, showing the location of samples NBF-B02 and NBF-B13 (after George Dawson)

Figure 7: Truss C, showing the location of samples NBF-B03, NBF-B10, and NBF-B14-15 (after George Dawson)

Figure 8: Truss D, showing the location of samples NBF-B04 and NBF-B16 (after George Dawson)

End frame E-E

Figure 9: Endframe E, showing the location of samples NBF-B06 and NBF-B07 (George Dawson)

Figure 10: Endframe F (based on endframe E), showing the location of sample NBF-B05 (George Dawson)

Relative

Figure 11: Bar diagram to show the position of samples in site sequence NBFASQ01

Relative

Figure 12: Bar diagram of samples in site sequence NBFBSQ02

Figure 13: Bar diagram of all dated samples

DATA OF MEASURED SAMPLES

Measurements in 0.01 mm units

```
NBF-B01A 233
25525120220524124822718597 94 53 39 56 134103169199205135
118131181167200179154200212250213128 82 88 80 113 93 97 81 77
    90130148169132123106100118100 90 74 84 93 103 93 81 66 70 63
    9564 63 67 85 77 96 75 103113 99 97 108109104115 98104120 144
    89 70 63 61 65 82 67 69 61 63 56 60 60 51 50 71 57 55 59 59
    40 47 51 46 52 62 73 63 71 62 75 67 75 94 90 77 93 112 81 85
    50}749791105 86 80 61 60 46 71 73 74 59 71 106 67 83 53 57
    677595110112100998678 781049912312513490106120104116
    113 85 99 70 84105111120 109 106 72 74 62 55 65 74 73 105 78 87
    120}7
    84 59 56 55 45 55 42 44 38 44 38 46 53 57 61 45 54 52 36 58
    49 56 63 52 46 74 46 53 58 47 61 62 55 55
NBF-B01B 233
259258199197248250217180105 89 53 43 63136121168201198137
11013218318819818415420621523921413578 90 79 110103 84 91 70
106 11514916814112210596125 97 94 72 97 88 105 85 84 61 77 65
9764667678 82 94 71 105116 93101 106107109110100100 121 145
86 72 62 64 60 80 71 65 61 65 54 59 62 49 57 71 51 59 61 50
42 51 50 49 51 63 72 67 63 60 73 70 83 87 92 76 98 107 81 83
57 66 97 87 102 91 89 53 67 45 64 81 77 58 79 107 69 81 56 56
7376991081081009890797610195125129130 96 101 122 107 110
109 87 97 72 81 101 122 126 114 103 79 76 52 60 64 73 70 108 77 85
125 74 65 81 86 78 91 80 80 89 69 83 89 92 87 89 92 69 59 74
79 63 60 53 52 54 42 43 37 45 38 47 51 57 58 52 51 49 44 54
47 57 63 56 43 70 53 49 60 45 63 74 53 58
NBF-B02A 199
13711210313715013010010064 85 98 91 121 92 104101 99 163164141
133218120181148132140149140164134 89126119146149187 208184151
116 92 78 65 58 79 62 93 98 87 62 61 52 52 77 68 80 87 103 80
708298114113711066812013211113510711811811311012486 66
48 90 120 76 81 91 84 62 67 43 61 86 84 113 88 72 59 63 35 44
67 60 45 37 47 46 40 29 31 46 39 56 65 48 76 77 57 52 52 60
56}57~7074 51 48 51 52 69 58 35 28 26 36 27 35 41 45 30 22
24}29~19 19 21 25 25 25 23 22 31 30 22 34 67 73 70 75 49 50
71 76 83 67 103 75 71 62 45 73 82 82 75 60 87 59 57 66 48 48
57 47 67 103 76 85 63 69 82 70 86 77 85 80 64 61 76 85 83
NBF-BO2B }19
1401021061341481321039668 82100 91 108104 88 109103154168140
13221712918815012314214714816713475133117157140191206184148
109 100 72 75 57 71 75 91 103 78 64 64 45 54 78 63 85 83 106 77
77 75104108110 80101681221351091321121131171161121218870
```

```
    53 80 118 86 87 90 84 68 54 45 67 90 86 104 86 73 57 60 39 42
    63 67 48 46 35 42 32 39 33 40 42 68 58 51 68 76 58 59 46 57
    56}54473754847 61 50 66 69 38 31 26 34 32 37 35 45 26 24,
    28 26 22 16 25 32 26 21 24 23 32 22 30 35 60 71 71 71 56 49
    717579 73 95 76 73 59 53 69 74 85 77 60 85 61 62 56 58 48
    51 54 73 79 88 82 68 66 84 63 79 81 79 80 64 64 75 84 84
NBF-B03A 221
22123822116619615311694122148123135108103 97109158168 87 70
76 81 107 84 67 62 44 57 61 64 75 64 51 71 79 101 97 71 69 121
65107 70 68 82 98 85 123 64 55 77 72 86 77 95 109 110 80 59 60
58 44 40 50 57 60 65 60 40 37 35 56 56 48 53 58 53 44 45 44
65 68 67 46 52 38 71 75 75 68 65 70 61 62 60 78 61 50 51 66
62 47 47 50 43 43 38 39 48 51 57 56 53 50 39 37 37 28 39 41
41 40 52 41 36 38 32 37 45 66 57 56 62 56 55 47 40 54 46 72
50 60 45 50 59 66 69 63 58 36 46 53 61 61 92 98 86 65 57 51
48 51 56 64 37 40 47 45 41 53 66 86 79 82 69 71 64 64 85 87
116110119 82 84 73 76 68110115 85 78 108 91 78 73 66 50 62 54
77941251069991151183220210164155140122120173186201223194
272
NBF-B03B 221
2162442131622001511189612214912213710710395111155168 88 70
    73 81 103 87 62 70 46 55 63 62 74 65 54 70 75 105 91 68 69 123
    65111 71 66 85 97 87 121 56 60 86 77 77 81 93 103 119 86 62 63
    62}3993949495961 66 58 40 36 41 53 52 52 54 50 62 48 43 45
```



```
    62 45 43 58 46 40 40 32 50 50 53 65 47 45 47 39 39 24 35 43
    35}404350[35 31 37 31 46 63 61 57 66 60 56 49 36 52 54 63
    53 60 49 50 61 63 74 69 53 39 45 55 61 61 90 96 84 68 53 57
    42}544575842 43 45 39 48 51 64 90 81 79 68 73 60 70 86 84
    115106117 86 85 71 57 90 102 116 86 76 105 100 70 71 59 53 60 59
    769712310896 96149185 222 207157163139118115179189197223199
    261
NBF-B04A 173
107 161 196 16570 72 101 106 89 64 56 68 80 64 78 50 40 36 51 42
53 61 71 60 42 35 37 26 25 33 20 34 40 26 36 25 34 31 31 35
41}373632\mp@code{28}3124 25 33 30 32 23 24 28 27 23 27 32 42 35
45}38414151 41 34 49 75 92 41 55 47 33 51 37 37 56 58 50 51
41 40 40 31 56 43 54 41 46 48 31 38 32 26 36 51 64 63 47 53
46}34284034 33 41 46 55 47 35 48 57 47 48 35 34 31 22 44
49 51 70 58 40 45 38 38 38 44 71 77 48 66 40 28 24 20 28 32
30}28\mp@code{37}24 27 33 35 44 33 42 36 37 32 24 21 27 33 23 42 36
33}31324243 37 45 59 60 56 53 43 46 40
NBF-B04B }19
103 154196175 72 71 96 106 96 67 55 68 75 62 83 45 41 41 48 41
55 61 70 58 46 31 35 25 26 33 25 31 37 30 38 26 31 30 28 35
40}4
```

```
    43 40 44 49 38 36 55 68 98 42 50 43 41 51 33 38 56 57 52 49
    44}34\mp@code{39}37524355434643 34 38 34 25 32 51 67 68 47 56
    45}3032\mp@code{26}38314144 57 44 35 50 60 44 50 31 36 27 26 43
    48}5961 56 39 32 39 36 46 45 63 67 54 62 37 26 19 25 36 27
    29 31 33 27 22 34 32 43 36 39 36 41 33 26 23 24 30 29 37 38
    33 31 29 33 35 42 57 63 54 56 55 40 53 55 59 57 56 41 44 51
    48 40 48 50 55 52 47 51 55 52 63 53 56 60 28 46 53
NBF-B05A 209
    19416822816411186524380190130191234205119100131151144187
    10910011914215314978537474 88100 87 75 73 125 142140114114
    556977 96 93 66 49 60 60 75 44 53 48 48 48 83 42 44 60 64
    5710568 98 88 84 69 87 89 111 77 73 93 106 139 84 48 55 61 52
    69656064 55 48 49 50 41 84 77 60 63 60 56 49 67 59 65 83
    84 86 71 103 70 68 82 106 123 89 102 92 88 118 82 52 83 116 117 127
    70 58 52 42 41 41 46 81 62 73 66 49 48 40 52 60 48 62 56 112
    99 92 83 65 64 80 62 81 127 88 94 74 82 88 97 85 60 42 35 63
    80 92 89 120 84 81 65 38 49 42 51 82 95 68 75 99 73 62 81 87
    82 110 77 76 80 55 87 82 90 83 97 77 65 53 51 86 54 37 29 23
    48 36 32 41 35 37 48 51 53
NBF-B05B 209
    191169216175115 85 54 45 79 191 131183240197122101140155146188
    115103115137154150 85 57 68 77 89 99 87 77 70 111148141 121 105
    53 75 74 98 84 66 44 64 59 75 45 49 48 47 49 79 42 43 65 66
    6410560 97 89 80 76 82 85 112 80 69 94 111128 83 46 54 56 51
    78 56 60 63 58 45 54 47 36 95 78 52 68 54 54 48 72 65 67 80
    74 86 74 102 68 73 79 107 128 87 102 93 86 116 83 47 88 116119 129
    69 60 49 48 35 41 50 77 65 74 77 51 53 42 52 55 54 62 57 115
    93 95 83 64 65 82 56 85 135 82 91 75 81 86 101 88 59 39 34 65
    80 92 90 117 86 83 65 42 47 43 53 79 91 69 79 101 64 62 84 88
    82 110 76 80 76 51 91 82 87 85 97 89 57 56 54 78 60 30 27 33
    48 33 33 42 31 43 62 51 48
NBF-B06A 234
5314754413203623473672402382352452422182142011371541338181
    676260941281361058494170247211128107 69 55 80 144123244
26520814312814517116514414210914414516317710077101101117 87
    847963108143134156102 89 102 98 148110 83 58 60 70 80 67 57
    45 52 55 67 63 51 53 54 72 59 58 91 116 66 63 76 86 78 72 68
    66 69 105 65 42 39 35 28 51 44 50 43 51 45 42 48 49 56 51 48
    50 41 49 55 63 57 60 62 51 63 52 67 64 63 69 67 88 68 62 57
    67 72 62 49 74 107 95 107 65 60 40 49 44 61 58 67 67 62 84 66
    57 52 47 54 60 63 72 73 79 76 65 76 60 79 67 82 97 84 78 73
    80}819295 54 65 48 54 74 76 92 86 84 55 56 47 41 36 37 46
    58 41 49 53 36 37 38 45 48 49 49 49 45 34 39 52 49 51 62 56
    41}3938484147 35 37 23 36 29 39 36 36 34
NBF-B06B 238
53748243431937134838024023824224124221621220413416013178 86
6261 66 881331371008594168257204128104774875136125241
```

```
2632091441291491731521621351101411411651751057198102117 90
907766105142135160109 87 97 97 147 110 84 56 65 65 84 65 57
48 48 57 61 66 50 58 52 71 66 56 93 114 62 71 69 90 78 72 63
68 79 94 69 38 51 33 32 55 46 49 42 41 45 44 50 41 54 64 43
45454946 61 62 63 53 64 53 53 70 64 56 79 70 102 65 75 62
68 87 55 53 76 117 93 102 66 70 42 53 39 57 60 58 68 71 80 63
58 48 51 50 63 77 65 74 68 79 67 68 71 78 73 92 96 89 80 65
77 80 90 88 54 69 43 56 79 70 98 97 80 56 60 42 40 37 41 47
58 52 41 47 39 40 42 44 52 49 52 53 46 38 46 42 53 66 59 57
47}403539[495037 39 19 36 22 29 36 31 33 37 38 47
NBF-B08A 184
106 14183 65 90 174226 248 309 236 129120 97 180 153 56 82 103 98 116
100 88 64 55 85 92 54 45 72 87 76 99 87 121 120 87 62 89 98 93
65 90 94126 173 120 68 47 46 85 103 78 71 63 85 49 49 56 81 67
68 66 43 27 50 59 93 71 51 93 81 92 69 103 78 86 77 105 151 133
131149123675850698576117 88 100 63 75 61 69 81 95 118 111
1409597109 90 79 99 93134114117115 85 92 98 104 78 86 75 83
67 61 69 66 63 85 60 54 54 50 60 58 77 85 57 40 46 48 54 48
46 60 57 40 58 47 59 42 50 58 55 50 57 56 38 39 52 54 58 59
52 51 56 40 50 46 55 62 47 40 50 57 52 38 44 46 67 50 50 54
5241 3140
NBF-B08B 184
104136 89 70 81 174 223248 310233130125 95177 14671 76 110 91 118
111 93 82 78 93 83 51 51 77 86 74 97 74 121 116 93 61 80 104 84
65 86 98 118 173 122 66 53 51 80 103 80 63 62 84 61 46 51 86 60
65 57 53 39 46 49 88 71 60 92 81 93 69 105 76 87 77 105 151 138
122 166 132 70 52 52 60 85 75 122 77 97 75 68 58 69 87 99 123 103
152103 84110 92 81 1029012711511611877 90 101 95 85 85 71 87
67 62 63 71 74 78 57 48 52 65 53 52 74 87 58 47 42 42 46 55
46}5156244494955464968 55 47 53 48 47 37 60 53 47 58
57 44 54 43 35 53 67 65 45 47 50 56 47 43 49 50 59 45 53 63
45 29 32 45
NBF-B09A 75
341 359191318358 347264278225241188226135126138136185 27313576
1091161221321401091198890121109188173143177 271 84 95 81 118
14313110420018111177 76 11413913914711678 98 89 127142 67 87
87100105116735959127135188165104 85 99 89
NBF-B09B 75
344 364211298 370 332274280 215249204186138122151120191222100 82
109112129139121 110126 91 83 121 108 201 180 163170266 89 95 79 112
1411241092041731188075113146139162117 76 105 87129141 66 82
93 9411011474575712013818216410679 98 79
NBF-B10A 76
2161982861682052322864332361311471571411369289101 98 86 111
825467 68 77 110112151116 92 86 98 133 93 102 97 122 150 139106
67 83 94 90 102 77 96 74 87 77 69 84 65 90 104 94 90 89 88 119
13412092152143169162191126130151236268424252292
```

NBF-B10B 76
20821126816820922928943223313114615514213592901039886111 77526271731131131501219186102114879493106138142104 698489979482918182757481688710396918987123 13211697150142166159191131124155227273437249283
NBF-B11A 170
2342942793723383022111671078787134188176141105709772138 1221322302701982742851281141509392698511815414314898186 138170141719610314515215510912013010353871261011127991 72525561638358696153845376771038488778053

 $4046453439505062634543354125354741 \quad 35 \quad 2725$ $24273040375747626563646957547767 \quad 59768767$ 47516266545962576961
NBF-B11B 145
239291281375334289214175108798513018417013199738369142 1161272222791972652871261131509587747912414914914697184 144167134661101141351701541101021291056376115881219779 78495367627366636761836363731008687838353
 $617358596658274538562747394242354151 ~ 39 ~ 30$ $35464835374655546143404138433233403433 ~ 31$ 2829433353
NBF-B12A 146
1031061011661962832172942433293242952211721038589113153124 10811077108801621331311741841251531491141051381021017989 121122163139129214140163128691171101491501441009813510064 919410011396928044515855655447434659486652

 455244354855
NBF-B12B 146 891011101641912792192952483233192942171741088278120147130 1301078211073150136130173188125155149109104139991018576 1231271541461162141461611366112010114416414994991379078 781049212193928543524858665545454463536153

 $504254504038 \quad 3640513241323447644051465234$ 435942424954
NBF-B13A 110
164105114133142130931138567674865931358183858157 891028388687092100109108666756525966112104110117 9312274689297971071089362588559669480929291

NBF-B13B 110
1451031271341431401091169662865861911377496948159 9495917871747211810799737157546470120134121126 8114071798710993116114867162866665917810183102
 $8070517774826982867676 \quad 61638659635276 \quad 6249$ 39374443556355614737
NBF-B14A 84
141201187201199164214165137172146151149243164253266257192215 1471159961798512097110107829299128110751101218490 99675259696454507267888070957610381727996 911251129185989274100131131164137123168112144159126174 125141105134
NBF-B14B 84
119185181200190159219165140148137147153208181265270257203215
15211589658185113113106109100103108135130781051179090 95674866696158507174768969917510277719087 911231258776112868088126138165135124170122137151127171 129143114119
NBF-B15A 82
20424715519517811385154167178160106111114101871008493128 971351411098212915613910512810279706065103142938988 7469661199811283101111134120118657857597263113113 114108691166565608290111866947588971608881100 77100
NBF-B15B 82
206254153193176122771651681831661041051239987939089125 102134137998413515214010412410676716059105117909783 7371601239610987110112130121113776959646562123106 11311265117626658839111183696555856267828094 7395
NBF-B16A 98 67701069610575105113130100125699951595763123142103 1367914785718510611513416990794912490589912211589 1058570767981848987734050921038310963949967 76821196211083105958910368647669706062628694

NBF-B16B 98 68781051041017696113151113113727855635562135156102 1419014478839411610013615378756111291718311211992

