THE BELLFRAME
CHURCH OF ST JOHN THE EVANGELIST CARLTON-IN-LINDRICK NOTTINGHAMSHIRE

SURVEY, RECORDING AND TREE-RING ANALYSIS OF TIMBERS

Alison Arnold, Robert Howard \& George Dawson
NGR: SK 5882683900
MAY 2016
 LOTTERY FUNDED

UNITED KINGDOM - CHINA - MALAYSIA

SURVEY, RECORDING, AND TREE-RING ANALYSIS OF TIMBERS FROM THE BELLFRAME OF THE CHURCH OF ST JOHN THE EVANGELIST, CARLTON-INLINDRICK, NOTTINGHAMSHIRE

ALISON ARNOL
ROBERT HOWARD
GEORGE DAWSON

SUMMARY

Dendrochronological analysis was undertaken on samples taken from timbers of the bellframe at this church.

Site sequence NBFOSQ01, contains six samples and spans the period AD 1486-1633.
Interpretation of the sapwood suggests felling of the timbers occurred in AD 1633.
A second site sequence is undated.

SURVEY, RECORDING, AND TREE-RING ANALYSIS OF TIMBERS FROM THE BELLFRAME OF THE CHURCH OF ST JOHN THE EVANGELIST, CARLTON-IN-LINDRICK, NOTTINGHAMSHIRE INTRODUCTION

The church of St John is situated a few miles north of Worksop (Figs $1 \& 2$) and is mentioned in the Domesday Book, although it is not until AD 1646 that it became known as St John's. The end of the eleventh century saw the demolition and rebuilding of the nave and chancel with work also being carried out on the tower arch. In AD 1190 a chapel was constructed at the east end of the north aisle in dedication to Thomas a Becket. Further major work was undertaken between AD 1425-53 with the nave walls being raised, windows being inserted, and new roofs for the nave and aisle; the tower was also raised by a further stage at this time. Another period of restoration occurred in the nineteenth century, including the erection of a gallery at the west end, a south aisle with a small vestry and porch at its east end constructed and the Becket chapel rebuilt. The north aisle was increased in width and all roofs 'under ceiled'. (http://southwellchurches.nottingham.ac.uk/carlton-in-lindrick/hintro.php).

The Bell frame

The oak bellframe for three bells is of double jack-braced design, Pickford Group 6.D, plan type 3.1 (Figs 3 \& 4). It is of a piece, built in one phase, and seems to include some re-used timbers. Of great interest is the incised: E P 1634 on the top cill of frame E, which may indicate the date, whilst the initials are probably those of the carpenter, though this piece of timber may be re-used, note the redundant mortise below the date with two large pegs. The bottom sills of the four trusses are connected to the gate ends by lapped dovetail joints. Stylistically the frame dates to the second quarter of the seventeenth century.

The Bells

1. [76] VIRGINIS [] EGREGIS []VOCOR[] CAMPANA [] MARIE [] DNS WILLIS CHAWMBIR

3. HEC [50] CAMPANA [50] SACRA [50] TRINITATE BEATA [50] []H TH 1623

38 " c 9.5 cwt

Badge numbers are taken from the Church Bells of Nottinghamshire.

The treble is an interesting bell of the Somercotes type which appear to have been cast by John Smith, founder of Louth. It is the only example of the type to be found outside Lincolnshire. The donor, William Chamber was parson from AD 1417 to AD 1443. These dates tie in with the Somercotes bell, dated AD 1423, and the Somerby pair, dated AD 1431. The word spacers on this bell are figures from the centres of different letters.

The second bell is by Daniel Hedderly. The third bell is a bit of a puzzle for it bears a swastika used by the Heathcotes of Chesterfield. However, the lettering, date and word spacers are Nottingham stamps. The initials may well indicate Thomas II Heathcote, grandson of Ralph Heathcote and nephew of Godfrey. It is certainly the last known bell with any Chesterfield connections.

Bell ringing certainly appear to have been popular in the parish, for in 1573 (79) and in 1620 (80) parishioners appeared before the Archdeacons Court for ringing excessively.

The fittings are of nineteenth-century date, the wheels and hanging straps showing similarities with those made by Taylors of Loughborough, but this place does not occur in their Records. The plain bearings are housed in cast iron holders with caps of interesting design.

Physical data:

	Diameter(cm)	Weight
Treble.	80	c 5 cwt
2.	82	c 7 cwt
Tenor.	96.5	c 9.5 cwt

PRINCIPLES OF TREE-RING DATING

Tree-ring dating relies on a few simple, but fundamental, principles. Firstly, as is commonly known, trees (particularly oak trees) grow by adding one, and only one, growth-ring to
their circumference each, and every, year. Each new annual growth-ring is added to the outside of the previous year's growth just below the bark. The width of this annual growth-ring is largely, though not exclusively, determined by the weather conditions during the growth period (roughly March to September). In general, good conditions produce wider rings and poor conditions produce narrower rings. Thus, over the lifetime of a tree, the annual growth-rings display a climatically determined pattern. Furthermore, and importantly, all trees growing in the same area at the same time will be influenced by the same growing conditions and the annual growth-rings of all of them will respond in a similar, though not identical, way.

Secondly, because the weather over any number of consecutive years is unique, so too is the growth pattern of the tree. The pattern of a short period of growth, 20 or 30 consecutive years, might conceivably be repeated two or even three times in the last one thousand years. A short pattern might also be repeated at different time periods in different parts of the country because of differences in regional micro-climates. It is less likely, however, that such problems would occur with the pattern of a longer period of growth, that is, anything in excess of 60 years or so. In essence, a short period of growth, anything less than 50 rings, is not reliable, and the longer the period of time under comparison the better.

The third principal of tree-ring dating is that, until the early-to mid-nineteenth century, builders of timber-framed houses usually obtained all the wood needed for a given structure by felling the necessary trees in a single operation from one patch of woodland or from closely adjacent woods. Furthermore, and contrary to popular belief, the timber was used "green" and without seasoning, and there was very little long-term storage as in timber-yards of today. This fact has been well established from a number of studies where tree-ring dating has been undertaken in conjunction with documentary studies. Thus, establishing the felling date for a group of timbers gives a very precise indication of the date of their use in a building.

Tree-ring dating relies on obtaining the growth pattern of trees from sample timbers of unknown date by measuring the width of the annual growth-rings. This is done to a tolerance of $1 / 100$ of a millimetre. The growth patterns of these samples of unknown date are then compared with a series of reference patterns or chronologies, the date of each ring of which is known. When a sample "cross-matches" repeatedly at the same date against a series of different relevant reference chronologies the sample can be said to be dated. The degree of cross-matching, that is the measure of similarity between sample and reference is denoted by a "t-value"; the higher the value the greater the similarity. The greater the similarity the greater is the probability that the patterns of the samples and
references have been produced by growing under the same conditions at the same time. The statistically accepted fully reliable minimum t-value is 3.5 .

However, rather than attempt to date each sample individually it is usual to first compare all the samples from a single building, or phases of a building, with one another, and attempt to cross-match each one with all the others from the same phase or building. When samples from the same phase do cross-match with each other they are combined at their matching positions to form what is known as a "site chronology". As with any set of data, this has the effect of reducing the anomalies of any one individual (brought about in the case of tree-rings by some non-climatic influence) and enhances the overall climatic signal. As stated above, it is the climate that gives the growth pattern its distinctive pattern. The greater the number of samples in a site chronology the greater is the climatic signal of the group and the weaker is the non-climatic input of any one individual.

Furthermore, combining samples in this way to make a site chronology usually has the effect of increasing the time-span that is under comparison. As also mentioned above, the longer the period of growth under consideration, the greater the certainty of the crossmatch. Any site chronology with less than about 55 rings is generally too short for satisfactory analysis.

SAMPLING STRATEGY

A total of 11 samples was taken from various timber elements of this bellframe with each sample being given the code NBF-O and numbered 01-11. The location of all samples was noted at the time of sampling and has been marked on Figures 5-10. Further details can be found in Table 1.

ANALYSIS \& RESULTS

One of these samples (NBF-O05) was found to have too few rings for secure dating and so was rejected. The other ten samples were prepared by sanding and polishing and their growth-ring widths measured. These measurements were then compared with each other resulting in eight samples matching to form two groups.

Firstly, six samples matched each other and were combined at the relevant offset positions to form NBFOSQ01, a site sequence of 148 rings (Fig 11). This site sequence was then compared against a series of relevant reference chronologies for oak where it was found to match consistently and securely at a first-ring date of AD 1486 and a last-measured ring date of AD 1633. The evidence for this dating is given by the t-values in Table 2.

Two other samples also matched each other and were combined to form NBFOSQ02, a site sequence of 78 rings (Fig 12). Attempts to date this site sequence and the remaining two ungrouped samples were unsuccessful and all remain undated.

INTERPRETATION

Six of the samples have been successfully dated. One of these, NBF-O02, has complete sapwood and the last-measured ring date of AD 1633, the felling date of the timber represented. Three of the other dated samples have the heartwood/sapwood boundary ring which can be seen to be broadly contemporary (Fig 11). The average heartwood/sapwood boundary ring date of these three samples is AD 1615, allowing an estimated felling date to be calculated for the three timbers represented to within the range AD 1633-55, consistent with these timbers also having been felled in AD 1633. The felling date range allows for sample NBF-O10 having the last-measured ring date of AD 1632 with incomplete sapwood. The other two dated samples do not have the heartwood/sapwood boundary ring and so an estimated felling date range cannot be calculated for them. However, with last-measured ring dates of AD 1597 (NBF-O04) and AD 1598 (NBF-O06) these would be estimated to be, at the earliest, AD 1613 and AD 1614, respectively and therefore also likely to have been felled with the rest of the timber in AD 1633.

Felling date ranges have been calculated using the estimate that 95% of mature oak trees from this region have 15-40 sapwood rings.

DISCUSSION

The tree-ring analysis has demonstrated that the bellframe includes timber felled in AD 1633. This would lend support to the idea that an incised ' 1634 ' refers to the construction date of the frame. It had been postulated that this timber and perhaps others may have been used previously. However, the tree-ring dating, coupled with the stylistic dating of the frame to the second quarter of the seventeenth century, does not support this. Furthermore, in a document from AD 1635 churchwardens refer to the sum of $£ 26$ 13s 4d being spent the previous year on church repairs which may possibly relate to the rehanging of the bells (AN/PB 341/2/10), further supporting an AD 1634 construction for the frame.

Samples NBF-O09 and NBF-O10, both from top cills, match each other at a value of $t=10.2$, demonstrating that the two timbers represented were almost certainly cut from the same tree.

BIBLIOGRAPHY

AN/PB 341/2/10 churchwarden presentment, Carlton-in-Lindrick, Retford deanery, 27.10.1635, University of Nottingham Manuscripts and Special Collections

Arnold, A J, Howard, R E, Laxton, R R, and Litton, C D, 2002 - The Urban Development of Newark-on-Trent: A Dendrochronological Approach, Centre for Archaeol Rep 95/2002

Arnold, A J, 2003 unpubl Meeting House Cottage, Carlton in Lindrick, Nottinghamshire, unpubl computer file NCLASQ01, NUTRDL

Arnold, A J, Howard, R E, Litton, C D, and Dawson, G 2005 - The Tree-ring Dating of a Number of Bellframes in Leicestershire, Centre for Archaeol Rep 5/2005

Arnold, A J, Howard, R E, and Hurford, M, 2008a unpubl 101 Meeting Street, Quorn, Leicestershire, unpubl computer file QRNASQ01, NTRDL

Arnold, A J, Howard, R E, and Litton, C D, 2008b Nottingham Tree-Ring Dating Laboratory, Vernacular Architect, 39, 119-28

Carlton-in-Lindrick, http://southwellchurches.nottingham.ac.uk/carlton-in-lindrick/hintro.php

Howard, R E, Laxton, R R, Litton, C D, and Simpson, W G, 1994 Nottingham University Tree-Ring Dating Laboratory: results, Vernacular Architect, 25, 36-40

Tyers, I, 1997 Tree-ring Analysis of Timbers from Sinai Park, Staffordshire, Anc Mon Lab Rep, 80/97

ACKNOWLEDGEMENTS

The Laboratory and George Dawson would like to thank Richard Smith for facilitating access and John Kitchen, Professor John Beckett and Dr Chris Brooke for the information on the Southwell and Nottingham Church History website. Thanks are also given to Dr Chris Brooke for his comments on early drafts of this report. The research was undertaken as part of the Southwell and Nottingham Church History Project and this element was joint funded by The Heritage Lottery Fund and Nottinghamshire County Council.

Table 1: Details of samples taken from the bellframe at the Church of St John The Evangelist, Carlton-in-Lindrick, Nottinghamshire

Sample number	Sample location	Total rings	*Sapwood rings	First measured ring date (AD)	Last heartwood ring date (AD)	Last measured ring date (AD)
NBF-O01	Top cill, truss D	55	h/s	----	----	----
NBF-O02	East jack brace, truss C	88	21-	1546	1612	1633
NBF-O03	East brace, truss C	84	h/s	----	----	----
NBF-O04	West jack brace, truss C	112	--	1486	----	1597
NBF-O05	Top cill, truss B	NM	--	----	----	----
NBF-O06	West jack brace, truss B	57	--	1542	----	1598
NBF-O07	Top cill, truss A	68	h/s	----	--	----
NBF-O08	East brace, truss A	75	10	----	--	----
NBF-O09	Top cill, truss F	83	06	1543	1619	1625
NBF-O10	Top cill, truss E	86	13	1547	1619	1632
NBF-O11	South brace, truss E	104	20	1625	1608	1628

*NM = not measured
**h/s = the heartwood/sapwood boundary ring is the last-measured ring on the sample
$C=$ complete sapwood retained on sample, last-measured ring is the felling date

Table 2: Results of the cross-matching of site sequence NBFOSQ01 and relevant reference chronologies when the first-measured ring date is AD 1486 and the last-measured ring date is AD 1633

Reference chronology	t-value	Span of chronology	Reference
Church of St Nicholas (bellframe), Bringhurst, Leicestershire	8.0	AD 1502-1687	Arnold et al 2005
Meeting House Cottage, Carlton in Lindrick, Nottinghamshire	7.8	AD 1502-1651	Arnold et al 2003 unpubl
Sinai Park, Burton on Trent, Staffordshire	7.0	AD 1227-1750	Tyers 1997
White House, Main Road, Blyth, Nottinghamshire	7.0	AD 1453-1595	Howard et al 1994
40-44 Castlegate, Newark, Nottinghamshire	6.2	AD 1523-1620	Arnold et al 2002
101 Meeting Street, Quorn, Leicestershire	6.5	AD 1489-1658	Arnold et al 2008a
Aisled barn, Yew Tree Farm, North Leverton, Nottinghamshire	6.3	AD 1476-1618	Arnold et al 2008b

Figure 1: Map to show the general location of Carlton-in-Lindrick, circled (based on the Ordnance Survey map with permission of the Controller of Her Majesty's Stationery Office, ©Crown Copyright

Figure 2: Map to show the location of the Church of St John The Evangelist, arrowed (based on the Ordnance Survey map with permission of the Controller of Her Majesty's Stationery Office, ©Crown Copyright)

Figure 3: Plan, showing truss labelling

Figure 4: The bellframe, photograph taken from the north-west

Figure 5: Truss A, showing the location of samples NBF-O07 and NBF-008

Figure 6: Truss B, showing the location of samples NBF-N05 and NBF-N06

Figure 7: Truss C, showing the location of samples NBF-O02-04

Figure 8: Truss D, showing the location of sample NBF-O01

Figure 9: End frame E, showing the location of samples NBF-O10 and NBF-O11

Figure 10: End frame F, showing the location of sample NBF-O09

Relative

Figure 11: Bar diagram of samples in site sequence NBFOSQ01

Off-
Total heartwood/sapwood
rings heartwood/sapwood boundary position

Heartwood rings $\quad h / s=$ the heartwood/sapwood is the last-measured ring
Sapwood rings

Figure 12: Bar diagram of samples in undated site sequence NBFOSQ02

DATA OF MEASURED SAMPLES

Measurements in 0.01 mm units

```
NBF-O01A 55
    7571 39566298217231345315243407398417498363 311205155137
    221220217267 302254 293287195131189241271215 237227276254276232
    23618018721320514814714289118123161184249204
NBF-O01B 55
    6270 38 52 68 88 219242343 305 249390421414382361259211136136
    197240232258315254296285196136189239275217230234273254280226
    2 3 8 1 8 2 1 8 5 2 1 6 1 9 6 1 5 0 1 4 9 1 4 1 9 4 9 2 1 4 3 1 6 7 1 8 1 2 4 6 1 7 3 ~
NBF-O02A }8
    948197126113191134182241365 254182231269241200306271274 344
    352401434 347247251212227242246136173143167192226249292253255
    264163143172173209183189240250221252167160171192200 281 298264
    244248206 624347425051 27 51 69 93124127152139135108108
    6361719112296118118
NBF-O02B }8
    87 88 93126124 209 134192 230 381267190238268 232189309 274274 343
    353403411 361229238212223242252141167145171199222271315264265
    282141144138146163156184257222220 230155158172187192 301 305 249
    231280220524843444747 394061 88125128142131150 89 101
    706760931268412198
NBF-O03A 84
306286 349 342 31426329433431532642744933352935735845557215093
    77 99 118118146186205175182217240242 329319269257 298124 79 90
    86 63557459659112099153141104112130143131165172160146
    1241251341281731611899274 64 46 84 73 96 132142149104142 231
    248213234249
NBF-O03B }8
324258293 331329261300321321320418439338524 35135644958614992
79102109118150184209173183211259228309340255254293126 80 88
896451636863 8913495144130105113133140132156176164145
1211251341301701661879076654391 65105125143153107144221
256210239236
NBF-O04A 112
198201 142 95 84 72 73 99 74 82172 124 76 112 88 134162 128 78 107
9511284112841039711680718281182 391 370 366 382 207 204180
263 319475404 304425330260233235299275207167176215 85 203 215181
195191202254195177131129138150164101153217208141135163149150
1301251311487076899094 98 67 94 81 119150163210248186 188
243169178159143149125198 309 323 318259
NBF-O04B }11
195201148 95 82 67 79 102767416512370101 84132174124 73 88
921071041048496109105847483 80186418364366 392210209187
```

26231847939828841232727422523132727122116317621795202211181 18519020225719017611613213315416698155206218160131153158134 142114131155628282898998808979113152151220243162179 241170168172145154144207282330283287

NBF-O06A 57
314037638981222305236347226217300421327189284457479439 617454474383466573836645439345188168152116118183161213335307 270318239323397219198217221164144168288191274259201 NBF-O06B 57
244238617683205292234343240205306421293190285459484434 601437483397464595792667454411209153134136139155140250348333 286283230271294221207229238213157203343218329297226 NBF-O07A 67
21218116716620414213890139218210238154133180129115103108120 1391489590181211154231163148160136225347274306257339285334 21527729115271445864839197601081001188212416313791 11218322510993100415

NBF-O07B 68

2161741721491871331527414721520427114713516411710791115118 1421519788189219148235163156154145220328278315246326274311 19428428615659437348729699591069011381132175124106 10418821211510492400255

NBF-O08A 75
514433262705213824430529026819424562100104100100166140140 124154172162278231319310223268329351353392417385354303471423 226867098123161193109100223154111153123144130171156195305 170162113314236158208319161186250200154159140

NBF-O08B 75
531487249606915326829728625619923157111105104109172143140 124157187164318244337331221267330363380399421401373299471411 239806791138158172111114216151103157112160136174147188297 163172117316234154182320163188244202153147148 NBF-O09A 83

199196287202187258302275312289305396409259163296401373396459 399365483388329511511481483468385362323227193252305340360325 382341392411304214176205166109141248258258243262289217166137 129183165185295317274245227288357205204243217243234240253303 269254190

NBF-O09B 83
197198274210189250295266304298301391412248171293387371402460 418373498389322499514476478462384368322222192241303327373335 359337388407300188180198172103162233267248245271265212174131 137180170176295304279249234286366214196256220226241240256288 276213204

NBF-O10A 86
152199364276367351333401457348172259479389300349317357420335 305397417397494422419427336273197291222386294358369262255371

349343314277269124167292245262214213204166156139107179123167 182188174188172194368179174236296336280246279410293228198184 142180250147147136
NBF-O10B 86
149201362264371357335395452352184266466404313356338369421338 302402420400493417422436342260206290263380317374361273250360 342350301265279121150273250285193198197147153135106166133176 214227185180155198323171185231312315269244277402289221200176 159166269138146136
NBF-O11A 104
25322720640143739556043421027131327625219117825612166102103 8986771091641782039691153154173108180343295229232198198 15412910398153124141163190144141977878108217155280236159 13914079645241523787149235233239234260270255257237190 127144216146113799571931201017499141132151158107117110 120119157123

NBF-O11B 104
2472251943984413745694292262633152732401881912581166897110 8988879616418020010183160153177114181354287223239198208 146122109107155127139168208160135858574115204153269228146 13913893766453465387141221212239242280287268280241195 126144227133119749671981211087610814712714916010012191 128104152127

